Skip to content

Python API usage

There are 3 validation functions in the public eido package interface:

  • validate_project to validate the entire PEP
  • validate_sample to validate only a selected sample
  • validate_config to validate only the config part of the PEP

Additionally there is a read_schema function that lets you read the schema.

Schema reading

As noted above read_schema function can be used to read a YAML-formatted schema to Python. Depending on the class of the argument used, it will get a remote schema (argument is a URL) or will read one from disk (argument is a path).

Remote

from eido import *

read_schema("https://schema.databio.org/pep/2.0.0.yaml")
[{'description': 'Schema for a minimal PEP',
  'version': '2.0.0',
  'properties': {'config': {'properties': {'name': {'type': 'string',
      'pattern': '^\\S*$',
      'description': 'Project name with no whitespace'},
     'pep_version': {'description': 'Version of the PEP Schema this PEP follows',
      'type': 'string'},
     'sample_table': {'type': 'string',
      'description': 'Path to the sample annotation table with one row per sample'},
     'subsample_table': {'type': 'string',
      'description': 'Path to the subsample annotation table with one row per subsample and sample_name attribute matching an entry in the sample table'},
     'sample_modifiers': {'type': 'object',
      'properties': {'append': {'type': 'object'},
       'duplicate': {'type': 'object'},
       'imply': {'type': 'array',
        'items': {'type': 'object',
         'properties': {'if': {'type': 'object'},
          'then': {'type': 'object'}}}},
       'derive': {'type': 'object',
        'properties': {'attributes': {'type': 'array',
          'items': {'type': 'string'}},
         'sources': {'type': 'object'}}}},
      'project_modifiers': {'type': 'object',
       'properties': {'amend': {'description': 'Object overwriting original project attributes',
         'type': 'object'},
        'import': {'description': 'List of external PEP project config files to import',
         'type': 'array',
         'items': {'type': 'string'}}}}}},
    'required': ['pep_version']},
   'samples': {'type': 'array',
    'items': {'type': 'object',
     'properties': {'sample_name': {'type': 'string',
       'pattern': '^\\S*$',
       'description': 'Unique name of the sample with no whitespace'}},
     'required': ['sample_name']}}},
  'required': ['samples']}]

With this simple call the PEP2.0.0 schema was downloaded from a remote file server and read into a dict object in Python.

Local

read_schema("../tests/data/schemas/test_schema.yaml")
[{'description': 'test PEP schema',
  'properties': {'dcc': {'type': 'object',
    'properties': {'compute_packages': {'type': 'object'}}},
   'samples': {'type': 'array',
    'items': {'type': 'object',
     'properties': {'sample_name': {'type': 'string'},
      'protocol': {'type': 'string'},
      'genome': {'type': 'string'}}}}},
  'required': ['samples']}]

This time the schema was read from disk.

Schema imports

eido lets you import schemas. Schema importing is a very powerful tool to make a cascading system of schemas that will keep the individual building blocks clear and simple.

To import a schema from within a schema one just needs to use an imports section somewhere in the schema. The section has to be a YAML list, for example:

imports:
    - ../tests/data/schemas/test_schema.yaml
    - https://schema.databio.org/pep/2.0.0.yaml

or

imports: [../tests/data/schemas/test_schema.yaml, https://schema.databio.org/pep/2.0.0.yaml]

This functionality is particularly useful when one wants to restrict an object that already has a remote schema defined for. For example, to restrict the type of one more sample attribute in a Project object (defined by PEP2.0.0 schema).

imports:
    - https://schema.databio.org/pep/2.0.0.yaml
description: "Schema for a more restrictive PEP"
properties:
  samples:
    type: array
    items:
      type: object
      properties:
        my_numeric_attribute: 
          type: integer
          minimum: 0
          maximum: 1
      required:
        - my_numeric_attribute
required:
  - samples

PEPs to successfully validate against this schema will need to fulfill all the generic PEP2.0.0 schema requirements and fulfill the new my_numeric_attribute requirement.

How importing works

The output of the read_schema function is always a list object. In case there are no imports in the read schema it's just a list of length 1.

If there are import statements the list length reflects the number of schemas imported. Please note that the schemas can be imported recursively, which means that an imported schema can import more schemas.

The order of the output list is meaningful:

  1. It reflects the order of importing in the "schema dependency chain"; the schema used in the read_schema call is always last in the output list.
  2. It reflects the order of enumerating schemas in the imports section; the order is preserved

This in turn implies the order of the validation in the functions described in detail below.

Entire PEP validation

from peppy import Project

Within Python the validate_project function can be used to perform the entire PEP validation. It requires peppy.Project object and either a path to the YAML schema file or a read schema (dict) as inputs.

p = Project("../tests/data/peps/test_cfg.yaml")
validate_project(project=p, schema="../tests/data/schemas/test_schema.yaml")

from eido.eido import load_yaml

s = _load_yaml("../tests/data/schemas/test_schema.yaml")
validate_project(project=p, schema=s)

If a validation is successful, no message is printed. An unsuccessful one is signalized with a corresponding jsonschema.exceptions.ValidationError

validate_project(project=p, schema="../tests/data/schemas/test_schema_invalid.yaml")
---------------------------------------------------------------------------

ValidationError                           Traceback (most recent call last)

<ipython-input-6-29fa9395c52f> in <module>
----> 1 validate_project(project=p, schema="../tests/data/schemas/test_schema_invalid.yaml")


/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/eido/eido.py in validate_project(project, schema, exclude_case)
    112     for schema_dict in schema_dicts:
    113         project_dict = project.to_dict()
--> 114         _validate_object(project_dict, _preprocess_schema(schema_dict), exclude_case)
    115         _LOGGER.debug("Project validation successful")
    116


/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/eido/eido.py in _validate_object(object, schema, exclude_case)
     93     """
     94     try:
---> 95         jsonschema.validate(object, schema)
     96     except jsonschema.exceptions.ValidationError as e:
     97         if not exclude_case:


/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/jsonschema/validators.py in validate(instance, schema, cls, *args, **kwargs)
    932     error = exceptions.best_match(validator.iter_errors(instance))
    933     if error is not None:
--> 934         raise error
    935 
    936


ValidationError: 'invalid' is a required property

Failed validating 'required' in schema:
    {'description': 'test PEP schema',
     'properties': {'_samples': {'items': {'properties': {'genome': {'anyOf': [{'type': 'string'},
                                                                               {'items': {'type': 'string'},
                                                                                'type': 'array'}]},
                                                          'protocol': {'anyOf': [{'type': 'string'},
                                                                                 {'items': {'type': 'string'},
                                                                                  'type': 'array'}]},
                                                          'sample_name': {'anyOf': [{'type': 'string'},
                                                                                    {'items': {'type': 'string'},
                                                                                     'type': 'array'}]}},
                                           'type': 'object'},
                                 'type': 'array'},
                    'dcc': {'properties': {'compute_packages': {'type': 'object'}},
                            'type': 'object'},
                    'invalid': {'type': 'string'}},
     'required': ['_samples', 'invalid']}

On instance:
    {'_config': {'name': 'test',
                 'output_dir': 'test',
                 'pep_version': '2.0.0',
                 'sample_modifiers': {'append': {'organism': {'Homo sapiens': {'genome': 'hg38'}}}},
                 'sample_table': '/Users/mstolarczyk/code/eido/tests/data/peps/test_sample_table.csv'},
     '_config_file': '/Users/mstolarczyk/code/eido/tests/data/peps/test_cfg.yaml',
     '_sample_df':   sample_name protocol genome
    0  GSM1558746      GRO   hg38
    1  GSM1480327      PRO   hg38,
     '_sample_table':             genome                              organism protocol sample_name
    sample_name                                                                  
    GSM1558746    hg38  {'Homo sapiens': {'genome': 'hg38'}}      GRO  GSM1558746
    GSM1480327    hg38  {'Homo sapiens': {'genome': 'hg38'}}      PRO  GSM1480327,
     '_samples': [{'_attributes': ['sample_name', 'protocol', 'genome'],
                   '_derived_cols_done': [],
                   '_project': {'_config': {'name': 'test',
                                            'output_dir': 'test',
                                            'pep_version': '2.0.0',
                                            'sample_modifiers': {'append': {'organism': {'Homo sapiens': {'genome': 'hg38'}}}},
                                            'sample_table': '/Users/mstolarczyk/code/eido/tests/data/peps/test_sample_table.csv'},
                                '_config_file': '/Users/mstolarczyk/code/eido/tests/data/peps/test_cfg.yaml',
                                '_sample_df':   sample_name protocol genome
    0  GSM1558746      GRO   hg38
    1  GSM1480327      PRO   hg38,
                                '_sample_table':             genome                              organism protocol sample_name
    sample_name                                                                  
    GSM1558746    hg38  {'Homo sapiens': {'genome': 'hg38'}}      GRO  GSM1558746
    GSM1480327    hg38  {'Homo sapiens': {'genome': 'hg38'}}      PRO  GSM1480327,
                                '_samples': <Recursion on list with id=140711461083656>,
                                '_samples_touched': True,
                                '_subsample_df': None,
                                'description': None,
                                'name': 'test',
                                'sst_index': ['sample_name',
                                              'subsample_name'],
                                'st_index': 'sample_name'},
                   'genome': 'hg38',
                   'organism': PathExAttMap
    Homo sapiens:
      genome: hg38,
                   'protocol': 'GRO',
                   'sample_name': 'GSM1558746'},
                  {'_attributes': ['sample_name', 'protocol', 'genome'],
                   '_derived_cols_done': [],
                   '_project': {'_config': {'name': 'test',
                                            'output_dir': 'test',
                                            'pep_version': '2.0.0',
                                            'sample_modifiers': {'append': {'organism': {'Homo sapiens': {'genome': 'hg38'}}}},
                                            'sample_table': '/Users/mstolarczyk/code/eido/tests/data/peps/test_sample_table.csv'},
                                '_config_file': '/Users/mstolarczyk/code/eido/tests/data/peps/test_cfg.yaml',
                                '_sample_df':   sample_name protocol genome
    0  GSM1558746      GRO   hg38
    1  GSM1480327      PRO   hg38,
                                '_sample_table':             genome                              organism protocol sample_name
    sample_name                                                                  
    GSM1558746    hg38  {'Homo sapiens': {'genome': 'hg38'}}      GRO  GSM1558746
    GSM1480327    hg38  {'Homo sapiens': {'genome': 'hg38'}}      PRO  GSM1480327,
                                '_samples': <Recursion on list with id=140711461083656>,
                                '_samples_touched': True,
                                '_subsample_df': None,
                                'description': None,
                                'name': 'test',
                                'sst_index': ['sample_name',
                                              'subsample_name'],
                                'st_index': 'sample_name'},
                   'genome': 'hg38',
                   'organism': PathExAttMap
    Homo sapiens:
      genome: hg38,
                   'protocol': 'PRO',
                   'sample_name': 'GSM1480327'}],
     '_samples_touched': True,
     '_subsample_df': None,
     'description': None,
     'name': 'test',
     'sst_index': ['sample_name', 'subsample_name'],
     'st_index': 'sample_name'}

Config validation

Similarly, the config part of the PEP can be validated; the function inputs remain the same

validate_config(project=p, schema="../tests/data/schemas/test_schema.yaml")

Sample validation

To validate a specific peppy.Sample object within a PEP, one needs to also specify the sample_name argument which can be the peppy.Sample.name attribute (str) or the ID of the sample (int)

validate_sample(
    project=p, schema="../tests/data/schemas/test_schema.yaml", sample_name=0
)

Output details

As depicted above the error raised by the jsonschema package is very detailed. That's because the entire validated PEP is printed out for the user reference. Since it can get overwhelming in case of the multi sample PEPs each of the eido functions presented above provide a way to limit the output to just the general information indicating the unmet schema requirements

validate_project(
    project=p,
    schema="../tests/data/schemas/test_schema_invalid.yaml",
    exclude_case=True,
)
---------------------------------------------------------------------------

ValidationError                           Traceback (most recent call last)

<ipython-input-10-e51679763445> in <module>
      2     project=p,
      3     schema="../tests/data/schemas/test_schema_invalid.yaml",
----> 4     exclude_case=True,
      5 )


/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/eido/eido.py in validate_project(project, schema, exclude_case)
    112     for schema_dict in schema_dicts:
    113         project_dict = project.to_dict()
--> 114         _validate_object(project_dict, _preprocess_schema(schema_dict), exclude_case)
    115         _LOGGER.debug("Project validation successful")
    116


/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site-packages/eido/eido.py in _validate_object(object, schema, exclude_case)
     97         if not exclude_case:
     98             raise
---> 99         raise jsonschema.exceptions.ValidationError(e.message)
    100 
    101


ValidationError: 'invalid' is a required property