Run SRA convert
How to extract fastq files from SRA
geofetch --version
geofetch 0.12.4
1) Download SRA files and PEP using GEOfetch
Add flags:
a) --add-convert-modifier
(To add looper configurations for conversion)
b) --discard-soft
(To delete soft files. We don't need them :D)
geofetch -i GSE67303 -n red_algae -m `pwd` --add-convert-modifier --discard-soft
Metadata folder: /home/bnt4me/virginia/repos/geofetch/docs_jupyter/red_algae
Trying GSE67303 (not a file) as accession...
Skipped 0 accessions. Starting now.
[38;5;200mProcessing accession 1 of 1: 'GSE67303'[0m
Processed 4 samples.
Expanding metadata list...
Found SRA Project accession: SRP056574
Downloading SRP056574 sra metadata
Parsing SRA file to download SRR records
Getting SRR: SRR1930183 in (GSE67303)
2023-08-01T17:04:12 prefetch.2.11.3: Current preference is set to retrieve SRA Normalized Format files with full base quality scores.
2023-08-01T17:04:12 prefetch.2.11.3: 1) Downloading 'SRR1930183'...
2023-08-01T17:04:12 prefetch.2.11.3: SRA Normalized Format file is being retrieved, if this is different from your preference, it may be due to current file availability.
2023-08-01T17:04:12 prefetch.2.11.3: Downloading via HTTPS...
2023-08-01T17:04:14 prefetch.2.11.3: HTTPS download succeed
2023-08-01T17:04:15 prefetch.2.11.3: 'SRR1930183' is valid
2023-08-01T17:04:15 prefetch.2.11.3: 1) 'SRR1930183' was downloaded successfully
2023-08-01T17:04:15 prefetch.2.11.3: 'SRR1930183' has 0 unresolved dependencies
Getting SRR: SRR1930184 in (GSE67303)
2023-08-01T17:04:15 prefetch.2.11.3: Current preference is set to retrieve SRA Normalized Format files with full base quality scores.
2023-08-01T17:04:16 prefetch.2.11.3: 1) Downloading 'SRR1930184'...
2023-08-01T17:04:16 prefetch.2.11.3: SRA Normalized Format file is being retrieved, if this is different from your preference, it may be due to current file availability.
2023-08-01T17:04:16 prefetch.2.11.3: Downloading via HTTPS...
2023-08-01T17:04:17 prefetch.2.11.3: HTTPS download succeed
2023-08-01T17:04:18 prefetch.2.11.3: 'SRR1930184' is valid
2023-08-01T17:04:18 prefetch.2.11.3: 1) 'SRR1930184' was downloaded successfully
2023-08-01T17:04:18 prefetch.2.11.3: 'SRR1930184' has 0 unresolved dependencies
Getting SRR: SRR1930185 in (GSE67303)
2023-08-01T17:04:19 prefetch.2.11.3: Current preference is set to retrieve SRA Normalized Format files with full base quality scores.
2023-08-01T17:04:19 prefetch.2.11.3: 1) Downloading 'SRR1930185'...
2023-08-01T17:04:19 prefetch.2.11.3: SRA Normalized Format file is being retrieved, if this is different from your preference, it may be due to current file availability.
2023-08-01T17:04:19 prefetch.2.11.3: Downloading via HTTPS...
2023-08-01T17:04:22 prefetch.2.11.3: HTTPS download succeed
2023-08-01T17:04:22 prefetch.2.11.3: 'SRR1930185' is valid
2023-08-01T17:04:22 prefetch.2.11.3: 1) 'SRR1930185' was downloaded successfully
2023-08-01T17:04:22 prefetch.2.11.3: 'SRR1930185' has 0 unresolved dependencies
Getting SRR: SRR1930186 in (GSE67303)
2023-08-01T17:04:22 prefetch.2.11.3: Current preference is set to retrieve SRA Normalized Format files with full base quality scores.
2023-08-01T17:04:23 prefetch.2.11.3: 1) Downloading 'SRR1930186'...
2023-08-01T17:04:23 prefetch.2.11.3: SRA Normalized Format file is being retrieved, if this is different from your preference, it may be due to current file availability.
2023-08-01T17:04:23 prefetch.2.11.3: Downloading via HTTPS...
2023-08-01T17:04:25 prefetch.2.11.3: HTTPS download succeed
2023-08-01T17:04:25 prefetch.2.11.3: 'SRR1930186' is valid
2023-08-01T17:04:25 prefetch.2.11.3: 1) 'SRR1930186' was downloaded successfully
2023-08-01T17:04:25 prefetch.2.11.3: 'SRR1930186' has 0 unresolved dependencies
Finished processing 1 accession(s)
Cleaning soft files ...
Creating complete project annotation sheets and config file...
[92mSample annotation sheet: /home/bnt4me/virginia/repos/geofetch/docs_jupyter/red_algae/GSE67303_PEP/GSE67303_PEP_raw.csv . Saved![0m
[92mFile has been saved successfully[0m
Config file: /home/bnt4me/virginia/repos/geofetch/docs_jupyter/red_algae/GSE67303_PEP/GSE67303_PEP.yaml
Let's see if files were downloaded:
ls
[0m[01;34mbuild[0m python-usage.ipynb [01;34mSRR1930184[0m
[01;34mcode[0m raw-data-downloading.ipynb [01;34mSRR1930185[0m
how_to_fastq_from_sra.ipynb [01;34mred_algae[0m [01;34mSRR1930186[0m
processed-data-downloading.ipynb [01;34mSRR1930183[0m
now let's check how does our config file looks like:
cat ./red_algae/GSE67303_PEP/GSE67303_PEP.yaml
# Autogenerated by geofetch
name: GSE67303
pep_version: 2.1.0
sample_table: GSE67303_PEP_raw.csv
"experiment_metadata":
"series_contact_address": "930 N University Ave"
"series_contact_city": "Ann Arbor"
"series_contact_country": "USA"
"series_contact_department": "Chemistry"
"series_contact_email": "[email protected]"
"series_contact_institute": "University of Michigan"
"series_contact_laboratory": "Koutmou Lab"
"series_contact_name": "mehmet,,tardu"
"series_contact_state": "MI"
"series_contact_zip_postal_code": "48109"
"series_contributor": "Mehmet,,Tardu + Ugur,M,Dikbas + Ibrahim,,Baris + Ibrahim,H,Kavakli"
"series_geo_accession": "GSE67303"
"series_last_update_date": "May 15 2019"
"series_overall_design": "Identification of blue light and red light regulated genes\
\ by deep sequencing in biological duplicates. qRT-PCR was performed to verify\
\ the RNA-seq results."
"series_platform_id": "GPL19949"
"series_platform_organism": "Cyanidioschyzon merolae strain 10D"
"series_platform_taxid": "280699"
"series_pubmed_id": "27614431"
"series_relation": "BioProject: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA279462\
\ + SRA: https://www.ncbi.nlm.nih.gov/sra?term=SRP056574"
"series_sample_id": "GSM1644066 + GSM1644067 + GSM1644068 + GSM1644069"
"series_sample_organism": "Cyanidioschyzon merolae strain 10D"
"series_sample_taxid": "280699"
"series_status": "Public on Sep 01 2016"
"series_submission_date": "Mar 26 2015"
"series_summary": "Light is one of the main environmental cues that affects the\
\ physiology and behavior of many organisms. The effect of light on genome-wide\
\ transcriptional regulation has been well-studied in green algae and plants,\
\ but not in red algae. Cyanidioschyzon merolae is used as a model red algae,\
\ and is suitable for studies on transcriptomics because of its compact genome\
\ with a relatively small number of genes. In addition, complete genome sequences\
\ of the nucleus, mitochondrion, and chloroplast of this organism have been determined.\
\ Together, these attributes make C. merolae an ideal model organism to study\
\ the response to light stimuli at the transcriptional and the systems biology\
\ levels. Previous studies have shown that light significantly affects cell signaling\
\ in this organism, but there are no reports on its blue light- and red light-mediated\
\ transcriptional responses. We investigated the direct effects of blue and red\
\ light at the transcriptional level using RNA-seq. Blue and red light were found\
\ to regulate 35% of the total genes in C. merolae. Blue light affected the transcription\
\ of genes involved protein synthesis while red light specifically regulated the\
\ transcription of genes involved in photosynthesis and DNA repair. Blue or red\
\ light regulated genes involved in carbon metabolism and pigment biosynthesis.\
\ Overall, our data showed that red and blue light regulate the majority of the\
\ cellular, cell division, and repair processes in C. merolae."
"series_supplementary_file": "ftp://ftp.ncbi.nlm.nih.gov/geo/series/GSE67nnn/GSE67303/suppl/GSE67303_DEG_cuffdiff.xlsx"
"series_title": "RNA-seq analysis of the transcriptional response to blue and red\
\ light in the extremophilic red alga, Cyanidioschyzon merolae"
"series_type": "Expression profiling by high throughput sequencing"
sample_modifiers:
append:
# Project metadata:
sample_treatment_protocol_ch1: "Cells were exposed to blue-light (15 µmole m-2s-1) for 30 minutes"
sample_growth_protocol_ch1: "Cyanidioschyzon merolae cells were grown in 2xMA media"
sample_extract_protocol_ch1: "Dark kept and blue-light exposed C.merolae cells were removed and RNA was harvested using Trizol reagent. Illumina TruSeq RNA Sample Prep Kit (Cat#RS-122-2001) was used with 1 ug of total RNA for the construction of sequencing libraries., RNA libraries were prepared for sequencing using standard Illumina protocols"
sample_data_processing: "The purified cDNA library was sequenced on Illumina''s MiSeq sequencing platform following vendor''s instruction for running the instrument., Sequenced reads were trimmed for adaptor sequence, and masked for low-complexity or low-quality sequence, then mapped to Cyanidioschyzon merolae 10D reference genome (assembly ID:ASM9120v1) using TopHat (v2.0.5)., Differential expression analysis was conducted by using cuffdiff tool in cufflink suite (v2.2)"
supplementary_files_format_and_content: "Excel spreadsheet includes FPKM values for Darkness and Blue-Light exposed samples with p and q values of cuffdiff output."
# End of project metadata
# Adding sra convert looper pipeline
SRR_files: SRA
derive:
attributes: [read1, read2, SRR_files]
sources:
SRA: "${SRABAM}/{srr}.bam"
FQ: "${SRAFQ}/{srr}.fastq.gz"
FQ1: "${SRAFQ}/{srr}_1.fastq.gz"
FQ2: "${SRAFQ}/{srr}_2.fastq.gz"
imply:
- if:
organism: "Mus musculus"
then:
genome: mm10
- if:
organism: "Homo sapiens"
then:
genome: hg38
- if:
read_type: "PAIRED"
then:
read1: FQ1
read2: FQ2
- if:
read_type: "SINGLE"
then:
read1: FQ1
project_modifiers:
amend:
sra_convert:
looper:
results_subdir: sra_convert_results
sample_modifiers:
append:
SRR_files: SRA
pipeline_interfaces: ${CODE}/geofetch/pipeline_interface_convert.yaml
derive:
attributes: [read1, read2, SRR_files]
sources:
SRA: "${SRARAW}/{srr}/{srr}.sra"
FQ: "${SRAFQ}/{srr}.fastq.gz"
FQ1: "${SRAFQ}/{srr}_1.fastq.gz"
FQ2: "${SRAFQ}/{srr}_2.fastq.gz"
To run pipeline, you should set up few environmental variables: 1) SRARAW - folder where SRA files were downloaded 2) SRAFQ -folder where fastq should be produced 3) CODE - (first you should clone geofetch), and $CODE is where geofetch folder is located
# Set SRARAW env
export SRARAW=`pwd`
# Create folder where you want to store fq
mkdir fq_folder
# Set SRAFQ env
export SRAFQ=`pwd`/fq_folder
# Unfortunately you have to pull gefetch folder from github, and set CODE variable:
mkdir code && cd code && git clone https://github.com/pepkit/geofetch.git && export CODE=`pwd` && cd ..
ls
[0m[01;34mbuild[0m processed-data-downloading.ipynb [01;34mSRR1930183[0m
[01;34mcode[0m python-usage.ipynb [01;34mSRR1930184[0m
[01;34mfq_folder[0m raw-data-downloading.ipynb [01;34mSRR1930185[0m
how_to_fastq_from_sra.ipynb [01;34mred_algae[0m [01;34mSRR1930186[0m
Now install looper if you don't have it
looper --version
looper 1.4.3
[0m
ls red_algae
[0m[01;34mGSE67303_PEP[0m
looper run red_algae/GSE67303_PEP/GSE67303_PEP.yaml -a sra_convert -p local --output-dir .
Looper version: 1.4.3
Command: run
Using default config. No config found in env var: ['DIVCFG']
Using amendments: sra_convert
Activating compute package 'local'
Pipestat compatible: False
[36m## [1 of 4] sample: cm_bluelight_rep1; pipeline: sra_convert[0m
Writing script to /home/bnt4me/virginia/repos/geofetch/docs_jupyter/submission/sra_convert_cm_bluelight_rep1.sub
Job script (n=1; 0.06Gb): ./submission/sra_convert_cm_bluelight_rep1.sub
Compute node: bnt4me-Precision-5560
Start time: 2023-08-01 13:06:42
Using outfolder: ./sra_convert_results/SRR1930183
### Pipeline run code and environment:
* Command: `/home/bnt4me/virginia/venv/jupyter/bin/sraconvert --srr /home/bnt4me/virginia/repos/geofetch/docs_jupyter/SRR1930183/SRR1930183.sra -O ./sra_convert_results`
* Compute host: bnt4me-Precision-5560
* Working dir: /home/bnt4me/virginia/repos/geofetch/docs_jupyter
* Outfolder: ./sra_convert_results/SRR1930183/
* Pipeline started at: (08-01 13:06:42) elapsed: 0.0 _TIME_
### Version log:
* Python version: 3.10.6
* Pypiper dir: `/home/bnt4me/virginia/venv/jupyter/lib/python3.10/site-packages/pypiper`
* Pypiper version: 0.12.3
* Pipeline dir: `/home/bnt4me/virginia/venv/jupyter/bin`
* Pipeline version: None
### Arguments passed to pipeline:
* `bamfolder`: ``
* `config_file`: `sraconvert.yaml`
* `format`: `fastq`
* `fqfolder`: `/home/bnt4me/virginia/repos/geofetch/docs_jupyter/fq_folder`
* `keep_sra`: `False`
* `logdev`: `False`
* `mode`: `convert`
* `output_parent`: `./sra_convert_results`
* `recover`: `False`
* `sample_name`: `None`
* `silent`: `False`
* `srafolder`: `/home/bnt4me/virginia/repos/geofetch/docs_jupyter`
* `srr`: `['/home/bnt4me/virginia/repos/geofetch/docs_jupyter/SRR1930183/SRR1930183.sra']`
* `verbosity`: `None`
----------------------------------------
Processing 1 of 1 files: SRR1930183
Target to produce: `/home/bnt4me/virginia/repos/geofetch/docs_jupyter/fq_folder/SRR1930183_1.fastq.gz`
> `fasterq-dump /home/bnt4me/virginia/repos/geofetch/docs_jupyter/SRR1930183/SRR1930183.sra -O /home/bnt4me/virginia/repos/geofetch/docs_jupyter/fq_folder` (744928)
<pre>
spots read : 1,068,319
reads read : 2,136,638
reads written : 2,136,638
</pre>
Command completed. Elapsed time: 0:00:02. Running peak memory: 0.08GB.
PID: 744928; Command: fasterq-dump; Return code: 0; Memory used: 0.08GB
Already completed files: []
### Pipeline completed. Epilogue
* Elapsed time (this run): 0:00:02
* Total elapsed time (all runs): 0:00:02
* Peak memory (this run): 0.0803 GB
* Pipeline completed time: 2023-08-01 13:06:44
[36m## [2 of 4] sample: cm_bluelight_rep2; pipeline: sra_convert[0m
Writing script to /home/bnt4me/virginia/repos/geofetch/docs_jupyter/submission/sra_convert_cm_bluelight_rep2.sub
Job script (n=1; 0.04Gb): ./submission/sra_convert_cm_bluelight_rep2.sub
Compute node: bnt4me-Precision-5560
Start time: 2023-08-01 13:06:44
Using outfolder: ./sra_convert_results/SRR1930184
### Pipeline run code and environment:
* Command: `/home/bnt4me/virginia/venv/jupyter/bin/sraconvert --srr /home/bnt4me/virginia/repos/geofetch/docs_jupyter/SRR1930184/SRR1930184.sra -O ./sra_convert_results`
* Compute host: bnt4me-Precision-5560
* Working dir: /home/bnt4me/virginia/repos/geofetch/docs_jupyter
* Outfolder: ./sra_convert_results/SRR1930184/
* Pipeline started at: (08-01 13:06:45) elapsed: 0.0 _TIME_
### Version log:
* Python version: 3.10.6
* Pypiper dir: `/home/bnt4me/virginia/venv/jupyter/lib/python3.10/site-packages/pypiper`
* Pypiper version: 0.12.3
* Pipeline dir: `/home/bnt4me/virginia/venv/jupyter/bin`
* Pipeline version: None
### Arguments passed to pipeline:
* `bamfolder`: ``
* `config_file`: `sraconvert.yaml`
* `format`: `fastq`
* `fqfolder`: `/home/bnt4me/virginia/repos/geofetch/docs_jupyter/fq_folder`
* `keep_sra`: `False`
* `logdev`: `False`
* `mode`: `convert`
* `output_parent`: `./sra_convert_results`
* `recover`: `False`
* `sample_name`: `None`
* `silent`: `False`
* `srafolder`: `/home/bnt4me/virginia/repos/geofetch/docs_jupyter`
* `srr`: `['/home/bnt4me/virginia/repos/geofetch/docs_jupyter/SRR1930184/SRR1930184.sra']`
* `verbosity`: `None`
----------------------------------------
Processing 1 of 1 files: SRR1930184
Target to produce: `/home/bnt4me/virginia/repos/geofetch/docs_jupyter/fq_folder/SRR1930184_1.fastq.gz`
> `fasterq-dump /home/bnt4me/virginia/repos/geofetch/docs_jupyter/SRR1930184/SRR1930184.sra -O /home/bnt4me/virginia/repos/geofetch/docs_jupyter/fq_folder` (744973)
<pre>
spots read : 762,229
reads read : 1,524,458
reads written : 1,524,458
</pre>
Command completed. Elapsed time: 0:00:02. Running peak memory: 0.012GB.
PID: 744973; Command: fasterq-dump; Return code: 0; Memory used: 0.012GB
Already completed files: []
### Pipeline completed. Epilogue
* Elapsed time (this run): 0:00:02
* Total elapsed time (all runs): 0:00:02
* Peak memory (this run): 0.0118 GB
* Pipeline completed time: 2023-08-01 13:06:47
[36m## [3 of 4] sample: cm_darkness_rep1; pipeline: sra_convert[0m
Writing script to /home/bnt4me/virginia/repos/geofetch/docs_jupyter/submission/sra_convert_cm_darkness_rep1.sub
Job script (n=1; 0.09Gb): ./submission/sra_convert_cm_darkness_rep1.sub
Compute node: bnt4me-Precision-5560
Start time: 2023-08-01 13:06:47
Using outfolder: ./sra_convert_results/SRR1930185
### Pipeline run code and environment:
* Command: `/home/bnt4me/virginia/venv/jupyter/bin/sraconvert --srr /home/bnt4me/virginia/repos/geofetch/docs_jupyter/SRR1930185/SRR1930185.sra -O ./sra_convert_results`
* Compute host: bnt4me-Precision-5560
* Working dir: /home/bnt4me/virginia/repos/geofetch/docs_jupyter
* Outfolder: ./sra_convert_results/SRR1930185/
* Pipeline started at: (08-01 13:06:47) elapsed: 0.0 _TIME_
### Version log:
* Python version: 3.10.6
* Pypiper dir: `/home/bnt4me/virginia/venv/jupyter/lib/python3.10/site-packages/pypiper`
* Pypiper version: 0.12.3
* Pipeline dir: `/home/bnt4me/virginia/venv/jupyter/bin`
* Pipeline version: None
### Arguments passed to pipeline:
* `bamfolder`: ``
* `config_file`: `sraconvert.yaml`
* `format`: `fastq`
* `fqfolder`: `/home/bnt4me/virginia/repos/geofetch/docs_jupyter/fq_folder`
* `keep_sra`: `False`
* `logdev`: `False`
* `mode`: `convert`
* `output_parent`: `./sra_convert_results`
* `recover`: `False`
* `sample_name`: `None`
* `silent`: `False`
* `srafolder`: `/home/bnt4me/virginia/repos/geofetch/docs_jupyter`
* `srr`: `['/home/bnt4me/virginia/repos/geofetch/docs_jupyter/SRR1930185/SRR1930185.sra']`
* `verbosity`: `None`
----------------------------------------
Processing 1 of 1 files: SRR1930185
Target to produce: `/home/bnt4me/virginia/repos/geofetch/docs_jupyter/fq_folder/SRR1930185_1.fastq.gz`
> `fasterq-dump /home/bnt4me/virginia/repos/geofetch/docs_jupyter/SRR1930185/SRR1930185.sra -O /home/bnt4me/virginia/repos/geofetch/docs_jupyter/fq_folder` (745021)
<pre>
spots read : 1,707,508
reads read : 3,415,016
reads written : 3,415,016
</pre>
Command completed. Elapsed time: 0:00:03. Running peak memory: 0.079GB.
PID: 745021; Command: fasterq-dump; Return code: 0; Memory used: 0.079GB
Already completed files: []
### Pipeline completed. Epilogue
* Elapsed time (this run): 0:00:03
* Total elapsed time (all runs): 0:00:03
* Peak memory (this run): 0.0793 GB
* Pipeline completed time: 2023-08-01 13:06:50
[36m## [4 of 4] sample: cm_darkness_rep2; pipeline: sra_convert[0m
Writing script to /home/bnt4me/virginia/repos/geofetch/docs_jupyter/submission/sra_convert_cm_darkness_rep2.sub
Job script (n=1; 0.07Gb): ./submission/sra_convert_cm_darkness_rep2.sub
Compute node: bnt4me-Precision-5560
Start time: 2023-08-01 13:06:50
Using outfolder: ./sra_convert_results/SRR1930186
### Pipeline run code and environment:
* Command: `/home/bnt4me/virginia/venv/jupyter/bin/sraconvert --srr /home/bnt4me/virginia/repos/geofetch/docs_jupyter/SRR1930186/SRR1930186.sra -O ./sra_convert_results`
* Compute host: bnt4me-Precision-5560
* Working dir: /home/bnt4me/virginia/repos/geofetch/docs_jupyter
* Outfolder: ./sra_convert_results/SRR1930186/
* Pipeline started at: (08-01 13:06:51) elapsed: 0.0 _TIME_
### Version log:
* Python version: 3.10.6
* Pypiper dir: `/home/bnt4me/virginia/venv/jupyter/lib/python3.10/site-packages/pypiper`
* Pypiper version: 0.12.3
* Pipeline dir: `/home/bnt4me/virginia/venv/jupyter/bin`
* Pipeline version: None
### Arguments passed to pipeline:
* `bamfolder`: ``
* `config_file`: `sraconvert.yaml`
* `format`: `fastq`
* `fqfolder`: `/home/bnt4me/virginia/repos/geofetch/docs_jupyter/fq_folder`
* `keep_sra`: `False`
* `logdev`: `False`
* `mode`: `convert`
* `output_parent`: `./sra_convert_results`
* `recover`: `False`
* `sample_name`: `None`
* `silent`: `False`
* `srafolder`: `/home/bnt4me/virginia/repos/geofetch/docs_jupyter`
* `srr`: `['/home/bnt4me/virginia/repos/geofetch/docs_jupyter/SRR1930186/SRR1930186.sra']`
* `verbosity`: `None`
----------------------------------------
Processing 1 of 1 files: SRR1930186
Target to produce: `/home/bnt4me/virginia/repos/geofetch/docs_jupyter/fq_folder/SRR1930186_1.fastq.gz`
> `fasterq-dump /home/bnt4me/virginia/repos/geofetch/docs_jupyter/SRR1930186/SRR1930186.sra -O /home/bnt4me/virginia/repos/geofetch/docs_jupyter/fq_folder` (745069)
<pre>
spots read : 1,224,029
reads read : 2,448,058
reads written : 2,448,058
</pre>
Command completed. Elapsed time: 0:00:02. Running peak memory: 0.081GB.
PID: 745069; Command: fasterq-dump; Return code: 0; Memory used: 0.081GB
Already completed files: []
### Pipeline completed. Epilogue
* Elapsed time (this run): 0:00:02
* Total elapsed time (all runs): 0:00:02
* Peak memory (this run): 0.0813 GB
* Pipeline completed time: 2023-08-01 13:06:53
Looper finished
Samples valid for job generation: 4 of 4
Commands submitted: 4 of 4
Jobs submitted: 4
[0m
Check if everything worked:
cd fq_folder
ls
SRR1930183_1.fastq SRR1930184_1.fastq SRR1930185_1.fastq SRR1930186_1.fastq
SRR1930183_2.fastq SRR1930184_2.fastq SRR1930185_2.fastq SRR1930186_2.fastq